High-Performance Organic Photovoltaics Incorporating an Active Layer with a Few Nanometer-Thick Third-Component Layer on a Binary Blend Layer

Hao-Wen Cheng, Chien-Yao Juan, Anisha Mohapatra, Chung-Hao Chen, Yu-Che Lin, Bin Chang, Pei Cheng, Hao-Cheng Wang, Chih Wei Chu, Yang Yang,* and Kung-Hwa Wei*

Cite This: Nano Lett. 2021, 21, 2207−2215

ABSTRACT: In this paper, a universal approach toward constructing a new bilayer device architecture, a few-nanometer-thick third-component layer on a bulk-heterojunction (BHJ) binary blend layer, has been demonstrated in two different state-of-the-art organic photovoltaic (OPV) systems. Through a careful selection of a third component, the power conversion efficiency (PCE) of the device based on PM6/Y6/layered PTQ10 layered third-component structure was 16.8%, being higher than those of corresponding devices incorporating the PM6/Y6/PTQ10 BHJ ternary blend (16.1%) and the PM6/Y6 BHJ binary blend (15.5%). Also, the device featuring PM7/Y1-4F/layered PTQ10 layered third-component structure gave a PCE of 15.2%, which is higher than the PCEs of the devices incorporating the PM7/Y1-4F/PTQ10 BHJ ternary blend and the PM7/Y1-4F BHJ binary blend (14.2 and 14.0%, respectively). These enhancements in PCE based on layered third-component structure can be attributed to improvements in the charge separation and charge collection abilities. This simple concept of the layered third-component structure appears to have great promise for achieving high-performance OPVs.

KEYWORDS: organic photovoltaics, layered third component, layered third-component layer structures, bulk heterojunction ternary blend

Organic photovoltaics (OPVs) are attracting attention as potential renewable energy sources displaying qualities of being flexible, lightweight, and amenable to large-area solution-processing.1−10 Recent increases in the power conversion efficiencies (PCEs) of OPV devices have resulted from improvements in the design of their nonfullerene acceptors and advances in their devices structures.11−18 To date, the PCEs of OPV devices have reached over 17%.19−21 The evolutionary breakthrough in solution-processed bulk-heterojunction (BHJ) binary blends featuring one donor and one acceptor was first demonstrated in 1995.22 Because of stronger exciton dissociation ability, such binary-blend devices exhibit PCEs much higher than those of devices based on a single organic semiconductor.23 Recently, ternary blends have been employed to provide a light absorption spectrum wider than that of binary blends and thereby further enhance the performance of BHJ OPVs.24−28 One common method for fabricating ternary-blend OPVs has been to mix a third component, either a donor or an acceptor, into a binary blend to form BHJ system.29−32 Compared with BHJ binary-blend systems, devices based on BHJ ternary blends typically show superior performance because of their complementary absorption and modified active layer morphologies.30,31 Even though much progress has been made in the development of ternary-blend devices, problems associated with the introduction of the third component have limited the extent to which the PCEs have increased. First, an isolated second donor or acceptor domain can retard charge transfer and transport, increasing the likelihood of charge recombination. Second, it has been difficult to control the vertical phase separation in the ternary blend systems. The disordered nature of the BHJ structure makes it possible that undesirable component materials become located at the interface between the active layer and electrode (e.g., acceptor-rich regions located near the anode or donor-rich regions located near the cathode). These drawbacks might hinder the photocurrent that contributes to the efficiency of the device, by limiting the short-circuit current (Jsc) and the fill factor (FF).15,33

A layered third-component bilayer OPV structure, a third-component layer on a BHJ binary-blend layer, might be a viable
alternative that overcomes these issues; notably, multilayered structures are used widely in thin film transistors and organic light-emitting diodes. A common method toward achieving a multilayer structure, using a cross-linking polymer to render the underlying layer resistant to the top layer, is limited by the choice of available materials and the need to use the orthogonal solvents to prevent damage to the underlying layers. Since transfer printing can solve this problem, we utilize it in the design of our device structure.

Herein, we describe an approach toward a new layered third-component active layer architecture featuring a layer of the third component on the BHJ binary-blend layer with the requirement that the third component can form cascade lowest unoccupied molecular orbital (LUMO) energy bands relative to the LUMOs of the donor and acceptor of the BHJ binary blend layer. The bilayer structure provides a structure superior to that of the conventional BHJ ternary-blend structure. We have prepared layered third-component structures through typical spin-coating of a BHJ binary blend layer and subsequent transfer printing of the third component layer, a polymer donor layer, upon it with transfer printing that does not damage the underlying layer; we used a stamp of the flexible elastomer polydimethylsiloxane (PDMS) as a scaffold for transferring the donor materials onto the binary blend layer. Compared with devices having the ternary-blend structure (isolated domains), the layered third-component structures appeared to be much more favorable for charge transport to the electrode. To demonstrate the universality of our approach, we prepared systems featuring two different BHJ binary blends (PM6/Y6 and PM7/Y1-4F) and the same third component (PTQ10). The PCEs of the PM6/Y6/layered PTQ10 layered third-component structure devices are up to 16.8% higher than those of devices containing the PM6/Y6/PTQ10 BHJ ternary-blend structure (up to 16.1%) and the PM6/Y6 BHJ binary blend (up to 15.5%). Similarly, the PCEs of the PM7/Y1-4F/layered PTQ10 layered third-component structure devices reached 15.2%, higher than those of the PM7/Y1-4F/PTQ10 BHJ ternary-blend device (14.2%) and the PM7/Y1-4F BHJ-binary-blend structure (14.0%). This concept of layered third-component active layers leads to a simple and favorable device architecture for high-performance OPVs.

Figure 1 displays schematic representations of devices having the ternary blend and layered third-component structures. In the ternary-blend structure, the third component is mixed with the donor and acceptor components of the binary blend, leading to formation of isolated domains and inefficient charge transfer between the donor/acceptor components and the third component. In contrast, in the layered third-component structure, the third component is introduced as a pristine layer on top of the BHJ binary-blend layer, eliminating the isolated domains and potentially providing more efficient charge transfer. The band alignment of the materials in this study are provided in the Supporting Information S1.

We chose two benchmark donor/acceptor systems as the binary blends for our active layers: (i) poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thien-2-yl)-benzo[1,2-b:4,5-b]-dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-S′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-e]dithiophene-4,8-dione)]

PM6/Y6 and PM7/Y1-4F}
Figure 2. (a) Chemical structures of the donors (PM6, PM7) in blue; the acceptors (Y6, Y1-4F) in red; and the third component (PTQ10) in green. (b) Schematic representation (drawn by Quantan Wu and used with permission) of the transfer of the third component onto the binary blend via a PDMS stamp. (c) The photograph of the PTQ10 film on a PDMS stamp. (d) The photograph of the PTQ10 film on a PDMS stamp after being removed.
were greater than that of the binary-blend devices (25.4 mA/cm²). The devices having the layered third-component structure had an average FF (74.5%) higher than those of the devices having the ternary-blend (68.0%) and binary-blend (70.2%) structures. Overall, the devices having the layered third-component structure had a PCE (up to 16.8%) higher than those of the devices having the binary-blend (up to 15.5%) and ternary-blend (up to 16.1%) structures. In comparison, corresponding PTQ10:Y6-based devices exhibited an average PCE of 14.8% with a value of V_{oc} of 0.86 V, a value of J_{sc} of 24.9 mA/cm², and an FF of 69.3%. Figure 3b displays the external quantum efficiency (EQE) spectra of the devices based on PM6/Y6 (binary blend), PM6/Y6/PTQ10 (ternary-blend structure), and PM6/Y6/layered PTQ10 (layered third-component structure). The measured values of J_{sc} were consistent with those from the integrated EQE spectra. The enhancement in the EQE in the range of 350–650 nm was presumably contributed by the absorption of PTQ10. Figure 3c shows the absorption spectra of the materials in this study. Figure 3d presents the device performance distribution for 20

Table 1. Average and Best Performances of Devices

<table>
<thead>
<tr>
<th>device structure</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>calculated J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
<th>champion PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM6/Y6 binary</td>
<td>0.84 ± 0.01</td>
<td>25.4 ± 0.2</td>
<td>24.9</td>
<td>70.2 ± 0.2</td>
<td>15.3 ± 0.1</td>
<td>15.5</td>
</tr>
<tr>
<td>PM6/Y6/PTQ10 ternary-blend structure</td>
<td>0.84 ± 0.01</td>
<td>25.8 ± 0.5</td>
<td>25.6</td>
<td>68.9 ± 0.3</td>
<td>15.8 ± 0.2</td>
<td>16.1</td>
</tr>
<tr>
<td>PM6/Y6/layered PTQ10 layered third-component structure</td>
<td>0.84 ± 0.01</td>
<td>26.5 ± 0.4</td>
<td>26.0</td>
<td>74.5 ± 0.3</td>
<td>16.5 ± 0.2</td>
<td>16.8</td>
</tr>
<tr>
<td>PTQ10/Y6 binary</td>
<td>0.86 ± 0.01</td>
<td>24.9 ± 0.2</td>
<td>23.5</td>
<td>69.3 ± 0.2</td>
<td>14.8 ± 0.2</td>
<td>15.0</td>
</tr>
<tr>
<td>PM7/Y1-4F binary</td>
<td>0.83 ± 0.01</td>
<td>25.4 ± 0.3</td>
<td>23.9</td>
<td>65.6 ± 0.1</td>
<td>13.8 ± 0.2</td>
<td>14.0</td>
</tr>
<tr>
<td>PM7/Y1-4F/PTQ10 ternary-blend structure</td>
<td>0.84 ± 0.01</td>
<td>26.2 ± 0.3</td>
<td>24.9</td>
<td>63.3 ± 0.2</td>
<td>13.9 ± 0.2</td>
<td>14.2</td>
</tr>
<tr>
<td>PM7/Y1-4F/layered PTQ10 layered third-component structure</td>
<td>0.83 ± 0.01</td>
<td>26.1 ± 0.2</td>
<td>24.8</td>
<td>69.0 ± 0.1</td>
<td>14.9 ± 0.2</td>
<td>15.2</td>
</tr>
<tr>
<td>PTQ10/Y1-4F binary</td>
<td>0.85 ± 0.01</td>
<td>15.3 ± 0.2</td>
<td>14.8</td>
<td>52.8 ± 0.1</td>
<td>6.8 ± 0.1</td>
<td>6.9</td>
</tr>
</tbody>
</table>

*On the basis of PM6/Y6, PM6/Y6/PTQ10 (ternary-blend structure), PM6/Y6/layered PTQ10 (layered third-component structure), PTQ10/Y6, PM7/Y1-4F, PM7/Y1-4F/PTQ10 (ternary-blend structure), PM7/Y1-4F/layered PTQ10 (layered third-component structure), and PTQ10/Y1-4F.
pieces of devices in total for each condition. To demonstrate the universality of this approach, we also investigated the performance of PM7/Y1-4F-based devices, again fabricated with the device architecture ITO/ZnO/active layer/MoO3/Ag. The average short-circuit current densities (J_{sc}) of the PM7/Y1-4F/layered PTQ10 layered third-component structure device were higher than those of the BHJ ternary-blend and binary-blend devices, similar to the trend for the PM6/Y6-based devices.
PTQ10 as the third component. The PM7/Y1-4F/layered PTQ10 (layered third-component structure) devices had an average FF (69.0%) higher than that of the PM7/Y1-4F/PTQ10 (ternary-blend structure) devices (63.3%). Furthermore, the devices having the layered third-component structure had a champion PCE (15.2%) higher than those of the devices based on the binary-blend (14.0%) and ternary-blend (14.2%) structures. For comparison, the PTQ10:Y1-4F-based devices exhibited an average PCE of 6.8% with a V_{oc} of 0.85 V, a J_{sc} of 15.3 mA/cm2, and an FF of 52.8%. The optimized photovoltaic parameters are summarized in Table S1, Table S2, and Table S3. The details of the experimental procedure can be found in the Supporting Information.

Figure 5. (a−c) The 2D GIWAX patterns of films of (a) PM6/Y6 (binary), (b) PM6/Y6/PTQ10 (ternary-blend structure), and (c) PM6/Y6/layered PTQ10 (layered third-component structure). (d) The 1D GIWAX patterns of the films. (e) The one-dimensional GIWAX patterns of each film. (e,f) Hole-only and electron-only device based on PM6/Y6 (binary), PM6/Y6/PTQ10 (ternary-blend structure), and PM6/Y6/layered PTQ10 (layered third-component structure).
recombination in ternary-blend structure. However, the slope of the layered third-component structure is a much smaller value (1.36×10^{-5}), indicating the layered third-component structure could effectively suppress the charge recombination coming from the traps inside the active layer.

To investigate the charge separation and collection abilities of the devices, we measured their corrected photocurrents at various effective voltages. Figure 4e displays plots of J_{ph}/J_{sat} in the range of the various effective voltages ($V_0 - V$) for the devices incorporating the PM6/Y6 (binary), PM6/Y6/PTQ10 (ternary-blend structure), and PM6/Y6/layered PTQ10 (layered third-component structure) structures. Here, J_{sat} is the saturated current density and V_{eff} is the effective voltage (where $V_{eff} = V_0 - V$; V is the applied voltage; V_0 is the voltage when $J_{ph} = 0$). When a large bias was applied to the devices, all of the free charge carriers were collected, leading to a saturated current density (J_{ph}) in the ternary-blend structure had lower values of J_{ph}/J_{sat} suggesting poor charge separation and charge collection efficiencies. When the effective voltage was low, the devices having the ternary-blend structure had higher values of J_{ph}/J_{sat} at lower effective voltages, presumably because they avoided isolating the third component. Among our three differently structured devices, those featuring the layered third-component structure had the highest values of J_{ph}/J_{sat} due to their greater charge separation and charge collection abilities. In addition, all of the optimized active layer thicknesses are around 110 nm, and thus the enhancement of the short-circuit current cannot result from the different thickness of the film.

To investigate their molecular packing of the films, we performed two-dimensional (2D) grazing-incidence wide-angle X-ray scattering (GIWAXS).50 Figures 5a–d presents the one-dimensional (1D) and 2D GIWAXS patterns of the binary-blend film, the ternary-blend structured film, and the layered third-component structured film. The molecular packing in the film of the layered third-component structure was similar to that in the binary-blend film. Compared with the binary-blend film and the layered third-component structure, ternary-blend structure had a slightly stronger intensity (by about 0.3 Å) for q_z, presumably because of the nature of the packing of PTQ10; Figure S2 (Supporting Information) presents the GIWAXS pattern of PTQ10. For the film having the ternary-blend structure, the incorporation of PTQ10 (third component) changed the molecular packing in the active layer. The introduction of the third component might have created an invalid charge-transfer interface, resulting in a lower FF for the devices having the ternary-blend structure. We adopted the space charge limited current (SCLC) method to measure the electron and hole mobilities. We prepared electron-only and hole-only devices having the structure ITO/PEDOT:PSS/active layer/MoO3/Ag and ITO/Al/active layer/Al, respectively. Figure 5e,f represents the dark J–V curves for the devices incorporating the PM6/Y6 (binary), PM6/Y6/PTQ10 (ternary-blend structure), and PM6/Y6/layered PTQ10 (layered third-component structure) structures. The devices having the layered third-component structure displayed electron and hole mobilities (3.0×10^{-7} cm2 V$^{-1}$ s$^{-1}$ for electron-only; 1.7×10^{-3} cm2 V$^{-1}$ s$^{-1}$ for hole-only) higher than those of the binary-blend devices (1.1×10^{-6} cm2 V$^{-1}$ s$^{-1}$ for electron-only; 9.1×10^{-4} cm2 V$^{-1}$ s$^{-1}$ for hole-only). In comparison, the devices having the ternary-blend structure had poor electron and hole mobilities (1.5×10^{-5} cm2 V$^{-1}$ s$^{-1}$ for electron-only; 2.7×10^{-4} cm2 V$^{-1}$ s$^{-1}$ for hole-only), presumably because the random mixing of the third component into the active layer led to inefficient charge transfer between the third component and the donor/acceptor components. Table S5 summarizes the mobility data. In addition, the stability of the OPVs with different active layer structures, PM6/Y6 (binary), PM6/Y6/PTQ10 (ternary-blend), and PM6/Y6/PTQ10 (layered third-component), have been tested at 130 °C. Figure S3 shows the stability curves of the PCEs of the devices with three different active layer structures at different heating times. The binary and the ternary-blend-based devices show their PCEs having relatively steep drops in the first 10 min, as compared to the case of the layered third-component-based device. After 20 min of annealing, the value of the PCE of the layered third-component-based device still maintains around 90% of its original PCE value; the PCEs of the binary and the ternary-blend-based devices, however, remain less than 80% of their original PCE. After 60 min of annealing, the value of the PCE of the layered third-component device remains 75% of the original PCE value; the binary and the ternary-blend-based devices, however, remain less than 70% of their original PCE. Overall, the layered third-component-based device shows the best stability at 130 °C for a period of 60 min among the three different kinds of active layer structure.

In summary, we have used transfer printing to prepare novel active layer architectures (layered third-component structures) for binary-blend BHJs and a third-component polymer donor. Overall, the devices with having the layered third-component structure had much more efficient charge separation and charge collection abilities than those of the corresponding devices having ternary-blend and binary-blend structures. The best PCEs for the devices incorporating PM6/Y6/layered PTQ10 and PM7/Y1-4F/layered PTQ10 (i.e., layered third-component structures) were 16.8 and 14.0%, respectively. These PCEs and stabilities reveal the superior performance of the devices having the layered third-component structures, prepared using transfer-printing, over traditional ternary-blend devices. We anticipate that this facile fabrication procedure will lead to OPVs pursuing even higher performance.
References

